Interpreting Physics Research

Recently I was reading a very interesting paper that discusses information and complexity in physical measurement processes. This is Inferring Statistical Complexity by James P. Crutchfield and Karl Young. There was just one problem, I didn’t understand a thing. While trying to get a foothold in the material, I found myself using several strategies for building my comprehension of the material.

Science publications have their own unique quirks and languages. I will share some tips that helped me understanding complex academic material. While my own specialization is physics, this can apply to many different academic fields.

Break it down

Don’t try to understand the entire paper all in one go. Tackle one section at a time. If the paper isn’t already organized into sections, skim the paper and try to break it down yourself.  Identify sections that contain what you need to know. Usually all the preceding sections are needed to understand that material, but sometimes you can get away with skimming sections when you have a specific purpose (Example: skimming the experimental apparatus when studying the theoretical implications). Always make sure you understand the introductory section before moving into the body of the paper.

Know the Language

Most papers have an introduction that provides some higher-level discussion of the foundational physics. Usually this includes more general topics that most readers will have some experience in. As the paper goes on, the language becomes more and more specific to whatever topic or sub-field this paper discusses. As you read this section, jot down any concepts you don’t understand, and jot down a few that you do understand. It is important to understand at least the base definitions of terms used in this sub-field. Watch out! Some terms that you know in a general sense might have a very particular meaning in a sub-field.

Read the Cited articles

If you aren’t already actively performing research in a sub-field, you probably aren’t up-to-date with all the existing research and techniques. Most papers don’t spend the time to fully describe all the foundations approaches and techniques. Naturally there is only so much space for detailing mathematically derivations or previously derived conclusions. Regardless, these are important pieces for understanding research. So as you read the paper, find areas that you don’t understand and dig up the articles that are cited for that area.

For example, when reading that paper on statistical complexity, I discovered that one of the citations was an extremely long and detailed thesis on the material that one of the authors had written . Reading the thesis not only familiarized me with the models they were using, but also the underlying assumptions of the research.

Draw Your Own Picture

Sometimes you need to draw your own picture of what is happening. As much as the authors of the paper try to make things clear, they are usually targeting their writing at researchers and academics. What they might consider to be a clear picture might be completely incomprehensible to anyone without a masters in the field. Instead of relying on their own presentation of the material, draw your own. As you read through the paper, built a visual map of interrelated concepts and factors in the research. Even if details aren’t explicitly stated, you can work out the gaps by looking at what is missing in your visual picture.

Learning is a skill, and you can develop your learning abilities to learn new concepts and skills more efficiently and effectively. While these methods work for me, they might not all be the approach that everyone takes.  As you read and learn, you’ll develop your own techniques as well to suit your learning style and way of thinking.